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Abstract--In the present paper, the performance of Lagrangian eddy interaction models in homogeneous 
isotropic stationary turbulence (HIST) is investigated. The relationships between the eddy time and length 
scales and certain integral scales in HIST are investigated in detail. One-dimensional dispersion of 
non-fluid particles is then analysed. The influence of the fluid velocity auto-correlation along the particle 
path, G(z), is noted. An upper bound is determined for G(z) and is used to investigate the performance 
of eddy interaction models in the prediction of dispersion of heavy, non-fluid particles. Numerical 
simulations are used to confirm the analysis for a wide range of particle 'relaxation times'. 

Key Words: particle dispersion, eddy interaction model, stationarity, homogeneity, integral scales, 
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1. I N T R O D U C T I O N  

This paper discusses aspects of the eddy interaction model, a "Lagrangian" particle tracking 
method widely used in simulations of turbulent particulate flows. In the eddy interaction model, 
the motion of a dispersed particulate phase in a turbulent primary flow is determined by particle 
interactions with a succession of eddies in which the fluid velocity is constant within a finite volume, 
characterized by the "eddy length" and for a finite time, characterized by the "eddy lifetime". Eddy 
characteristics are determined from knowledge of the fluid turbulence. 

Numerous models have appeared in the literature, following the initial paper of Hutchinson et al. 

(1971), who considered uni-directional radial motion of particles in a turbulent pipe flow. Brown 
& Hutchinson (1979) developed the model further to consider two-dimensional motion, but 
retained the discrete eddy velocity specification of the original paper. James et al. (1980) used a 
continuous distribution of eddy velocities in two dimensions to predict particle tracks in a pipe 
cross-section. Wilkes et al. (1982) extended the model of James et al. (1980) to three dimensions 
to determine the influence of axial flow down a pipe. All of the above used eddy characteristic scales 
which remained constant throughout the flow. 

Kallio & Reeks (1989) predicted particle motion in a non-homogeneous turbulent wall layer with 
eddy characteristics determined from similarity laws. The model has also been developed to account 
for more complex non-homogeneous turbulence by determination of eddy scales from a numerical 
simulation of the turbulent primary flow. This coupled approach has been used by Gosman & 
Ioannides (1981), Faeth and co-workers (see Faeth 1983), Weber et al. (1984), Govan et al. (1989), 
Call & Kennedy (1992) and Sommerfeld et al. (1992), amongst others, to predict particle motion 
in various complex turbulent flows. Similar models are also used in commercial flow codes such 
as CFDS-FLOW3D (AEA Technology 1994). 

The approach is therefore widely used in turbulent particulate flows, although there have recently 
appeared in the literature several other approaches to particle dispersion in such flows (Berlemont 
et al. 1990; Burry & Bergeles 1993; Lu et al. 1993, for example). The attraction of the eddy 
interaction model lies in its conceptual simplicity and the fact that the only statistics required by 
the model are representative length, time and velocity scales, whereas, in the alternative models, 
the forms of either the temporal (Lagrangian) or the spatial (Eulerian) velocity auto-correlation 
functions (or both of these) are required. Recently, Wang & Stock (1992) have shown that the 
choice of eddy lifetime distribution in the eddy interaction model determines the form of the 
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Lagrangian fluid velocity auto-correlation function. By considering the idealized case of homo- 
geneous, isotropic and stationary turbulence, it will be shown below that the Eulerian spatial 
correlations are determined in eddy interaction models by the choice of the eddy length distribution. 
Knowledge of the temporal and spatial correlations for the eddy interaction model should aid 
proper comparisons between these models and the more sophisticated models mentioned above. 
The results of the analysis also have implications for non-homogeneous turbulence and these 
implications will be discussed where appropriate. 

In section 2, the relationship between eddy scales and certain integral scales characteristic of the 
turbulence is determined in the general case where the eddy velocity, length and lifetime are all 
random variables. In section 3, the performance of the eddy interaction model in predicting the 
dispersion of non-fluid particles in HIST is then analysed. The analysis is again performed for the 
very general case of random eddy velocity, eddy length and eddy lifetime. It is shown that the 
long-time dispersion coefficient for heavy, non-fluid particles does not exceed the long-time 
dispersion coefficient for fluid particles. Finally, in section 4, numerical simulations are used to 
confirm the validity of the analysis for particular cases of the model. 

2. TIME AND LENGTH SCALES IN EDDY INTERACTION MODELS 

2.1. Eddy interaction models 

The main features of eddy interaction models are illustrated in figure 1. At the beginning (t = 0) 
of an interaction, a non-fluid particle, with velocity upo, is coincident with a fluid particle at the 
centre of an eddy. Within the eddy, the instantaneous fluid velocity Ue is given by the sum of a 
mean part and a fluctuating part 

U e = U e -[- b/ '  e [ 1 ]  

Without loss of generality, the mean velocity Ue can be assumed to be zero in homogeneous 
turbulence. Each component of the fluctuating velocity U'e is found from a probability distribution 
with mean zero and variance u0, the "eddy velocity scale". The characteristic feature of the eddy 
interaction model, as opposed to other particle dispersion models, is that, throughout the duration 
of the interaction, u e remains constant in space and time within the eddy. In general, Up0 4= ue. 

At some later time, t :~ 0, both the eddy (and with it the fluid particle) and the non-fluid particle 
will have moved in space. The eddy translates with the instantaneous fluid velocity. However, the 
fluid and non-fluid particles do not, in general, remain coincident, since the non-fluid particle has 
a velocity different from that of the fluid. The non-fluid particle remains under the influence of the 
current eddy until either (i) t exceeds t~ (the eddy lifetime) or (ii) the separation of the fluid and 
non-fluid particles d(t) exceeds l¢ (the eddy length). The time taken to cross the eddy, to, is found 

~j 2Le _~ 

non-fluid particle 

. . . .  1 

~ X-P°~~///flu! partic,~--~P° e 
path 

time--o time= t 1 
Figure 1. Eddy interaction model. 
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from the relationship d(tc) = l~. If either of conditions (i) or (ii) is satisfied, a new eddy is entered. 
The particle thus remains within an eddy for an interaction time ti which is the minimum of t~ 
and to. 

Particle motions in eddy interaction models are therefore determined by three parameters: (i) 
eddy velocity, (ii) eddy lifetime and (iii) eddy length. Note that, in the most general case, the eddy 
lifetime and the eddy length, as well as the eddy velocity, are all random variables. Specification 
of eddy lifetimes and eddy lengths is discussed in sections 2.2 and 2.3 below. The eddy velocity 
scale u0 is set equal to the root mean square of the fluid velocity fluctuations, u', which is assumed 
to be known. 

Eddy scales used by Hutchinson et al. (1971), James et al. (1980) and Wilkes et al. (1982) were 
obtained from empirical correlations using Laufer's (1954) pipe flow data. Eddy scales in the 
near-wall turbulence studied by Kallio & Reeks (1989) were determined from laws of similarity 
at the wall. Gosman & Ioannides (1981), Faeth (1983) and Govan et al. (1989) determined 
eddy scales from a numerical primary flow solution using the k ~  turbulence model. Call & 
Kennedy (1992) accounted for anisotropic turbulence by the use of a Reynolds stress turbulence 
model for the primary flow, thereby allowing for different eddy velocities in different coordinate 
directions. 

The purpose of this paper is to investigate the performance of eddy interaction models in HIST. 
By establishing relationships between eddy scales and those of the flow itself, the models are 
constrained to function in the limiting cases studied below. The results obtained are expected to 
lead to an improved understanding of the performance of eddy interaction models in more general 
turbulent flows. In order to simplify the discussion, the following analysis is restricted to one spatial 
dimension only. 

2.2 Determination of  the eddy lifetime--diffusion of  fluid particles 

To begin with, the case of the diffusion of fluid particles from a point source in HIST 
is considered. The theory for this process was first given by Taylor (1921), and is discussed in 
Hinze (1975). The diffusion of fluid particles is determined by the Lagrangian fluid velocity 
auto-correlation function RL(T). The general form of the Lagrangian fluid velocity auto-correlation 
function RL(t, z) is 

(uf(t)uf(t + Z)) (Uf(t)Uf(t + Z)) 
RL(t, Z) = (U}(t))  = U': [2] 

where and uf(t) and uf(t + z) are the velocities of a fluid particle at times t and t + z, respectively, 
and the angled brackets indicate ensemble averaging over many such particles. In a stationary 
turbulence, RL(t, z) is independent of the time t and then RL(t, z) = Re(z). RL(Z) canlbe interpreted 
as a measure of the degree to which the motions of a fluid particle at two different times are 
correlated (Hinze 1975). For small time differences (r ~0),  RL(Z) is close to 1, whilst for large time 
differences (z --* ~ ) ,  RL (r) approaches zero. 

The Lagrangian integral time scale, rL, is defined in terms of the auto-correlation function by 

;J ZL = RL (z) dr [31 

and is therefore determined completely by RL(Z). Note that, in order that ZL be a valid measure, 
the underlying turbulence must be stationary. It is assumed that ZL is a known parameter for the 
particular case of HIST considered here. 

2.2.1. Determination of  RL(Z) in eddy interaction models. Wang & Stock (1992) have demon- 
strated that, if the eddy lifetime is distributed randomly according to a probability distribution 
function (p.d.f.)foe),  then a time averaged form for RL(r) is given by 

f ~(te -- r)f(t~) dt~ 

RL(Z) = -oo [4] 

j0 tef(te) dte 

IJMF 22/1--K 
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Integrating by parts, this can be written in the form 

f ~(a(t¢) dt~ 
RL (,c) -- 

fo qb(t¢)dt~ 

where 

[5] 

~t  °° 
4~(te) = f ( t ' )  dt' [6l 

e 

q~(to) is the probability that the (random) eddy lifetime is greater than te, i.e. tk(te)= P (eddy 
lifetime > te). 

In the case of the constant lifetime schemes of  Hutchinson et al. (1971), Brown & Hutchinson 
(1979), James et al. (1980), Wilkes et al. (1982), Gosman & Ioannides (1981) and Govan et al. 
(1979), the p.d.f, is a delta function, f(te) = 6(te - Te), where T, is the (constant) eddy lifetime. In 
this case, the auto-correlation assumes the form 

{ 1 0 - - - '  z~<Te Re(v) = T~ [7] 
z >  T~ 

The Lagrangian integral time scale r~ '°d~ found by integration of [7] is only half of the eddy lifetime 
T,, as noted by Wang & Stock (1992) and Minier & Pozorski (1992). Choice of To = 2Ze ensures 
"consistency" in the sense that the actual value of Lagrangian integral time scale, ZL, and that 
predicted from the model, r~ °d~, are the same. Ensuring consistency in this way guarantees that 
the long-time dispersion of fluid particles is predicted correctly. 

In the case (Kallio & Reeks 1989) when the eddy lifetime is distributed according to an 
exponential probability distribution, f ( t , )  = e x p ( -  t~/T)/T, where T is the mean of the distribution, 
RL(r) is then found to be 

RL(Z) = e -~/r [8] 

In this case, z~ '°dej = T, so that choosing T = TL ensures the consistency mentioned above. 
It is noted that Wang & Stock's (1992) method for finding RL(r) is correct when time-averaging 

and ensemble-averaging are equivalent, i.e. when the "model"  turbulence is stationary. In the 
context of  Lagrangian particle tracking methods ensemble-averaging must generally be used. The 
use of ensemble averaging is typified in the simulations discussed in section 4, in which a large 
number of identical particles is situated initially, at t = 0, at the same location. Each particle 
undergoes a series of eddy interactions and ensemble-averaged quantities are found by averaging 
over all particles. Special care must be taken in using eddy interaction models to ensure the 
equivalence of time-averaging and ensemble-averaging and this is discussed below. 

In the eddy interaction model, fluid velocities in successive eddies are assumed to be uncorrelated. 
Because the fluid velocity within the same eddy is constant in time and space, fluid velocities at 
different locations in time and space, but within the same eddy, are perfectly correlated. The 
numerator of [2] is therefore equal to zero for those particles whose velocities at times t and t + z 
are different and is equal to u '2 for those particles whose velocities are identical. The velocities at 
times t and t + z will be identical if no new eddy has been entered by a particle in the time interval 
~. This will be the case if the remainder of the lifetime of the eddy in which the particle resides 
at time t is greater than z. RL(t, z) may then be written in the form of the conditional probability 

Re(t, z) = P(remainder of eddy lifetime >f z Icurrent time = t). [9] 

In order that ensemble-averaging and time-averaging are equivalent, Re(t, z) must be indepen- 
dent of  the starting time t and [5] and [9] must lead to the same expression. From the discussion 
given above, RL(r) can be written in the form 

RE(Z) = Z(z) [101 
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where X ( z ) =  P(remainder of  lifetime >/z). The Lagrangian integral time scale is therefore given 
by 

fo ;o rL = RL(~) dz = Z(z) dz. [11] 

After integration by parts, this can be written in the form 

f0 ~L = zfl(z) d~ [121 

where f ( t )  is the p.d.f, of  the remainder of the eddy lifetime. The Lagrangian integral time scale 
may therefore by interpreted as the mean remaining lifetime in the eddy interaction model or, 
equivalently, the mean time to the "next"  eddy. Since the remaining lifetime cannot be greater than 
the full lifetime of the "current"  eddy, the mean remaining lifetime cannot exceed the mean eddy 
lifetime T. Using Wang & Stock's (1992) result that TL must exceed T/2 gives the following 
inequality 

ZL ~< T ~< 2ZL. [13] 

The inequality ZL ~< T can be re-stated as ¢r 2 ~< T 2 where a 2 is the variance of the distribution of 
eddy lifetimes. Many distributions exist for which the variance exceeds the square of the mean (e.g. 
some Gamma distributions). It is clear from the analysis that in using such eddy lifetime 
distributions, time-averaging and ensemble-averaging are not equivalent. The condition that the 
variance of the lifetime distribution should not exceed the square of its mean therefore provides 
a necessary condition for a suitable choice of eddy lifetimes and any alternative not satisfying this 
condition is not "admissable" as an eddy lifetime distribution. 

The extremes of inequality [13] in are found (i) in the case where the eddy lifetime is constant, 
when 2rL = T and (ii) in the case where the lifetime is distributed according to an exponential 
probability distribution, when ZL = T. The number of  computations required by eddy interaction 
models to simulate fluid particle dispersion over a given time period is dependent on the mean eddy 
lifetime T and therefore on the choice of  the probability distribution which defines the random 
lifetime. Expression [13] shows that no choice of  (admissible) probability distribution requires less 
interactions than the constant eddy lifetime model and none requires more interactions than the 
exponential distribution. 

By choosing the random lifetime of  the first eddy only to come from a distribution such that 

P(first eddy lifetime ~>t)= X(t) [14] 

where X(t) is given by [10], it can be ensured that the model turbulence is in the same statistical 
state at t = 0 as it is t ~ ~ ,  i.e. that the turbulence is stationary. For the constant lifetime model, 
X( t )=  1 - t / T e ,  0 < t  < Te, so that the p.d.f, for the lifetime of  the first eddy only is 
f~(t) = 1/Te, 0 < t < T~, i.e. the lifetime of the first eddy should be randomly distributed according 
to a uniform distribution on [0, Te]. Numerical simulations have confirmed the stationarity of  this 
description for the constant lifetime model and have confirmed that the ensemble-averaged 
auto-correlation is the same as that given by time-averaging using the method of  Wang & Stock 
(1992). 

For  the constant lifetime model, the stationary state will only be reached if the special treatment 
noted above is applied to the first eddy. Kallio & Reeks (1989) state that the constant lifetime model 
is unable to produce a stationary turbulence and is also unable to predict the correct long-time 
dispersion of  fluid particles. The above analysis indicates that simple modifications of  the constant 
lifetime model are able to remove these objections. In the case of the exponential eddy lifetime 
distribution used by Kallio & Reeks (1989), stationarity is ensured without any special treatment 
of  the first eddy, since it can be shown that the first eddy lifetime should also come from the same 
exponential distribution as that of  subsequent eddies. 

2.3. Determination of  the eddy length scale--gravitational settling of  heavy non-fluid particles 

The dispersion of  heavy particles falling under the influence of  gravity in HIST has been 
considered by Csanady (1963). In order to analyse this situation, it is necessary to consider the fluid 
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velocity auto-correlation along a particle path, G(Q. Assuming homogeneity in time and space, 
G(T) may be defined as 

G(T) = (Uf(X, t)vf(x + zV~ + e(z), t + z))  = u'2RP(z) [15] 

where vf(x, t) is the fluid velocity at spatial location x and time t, x is the position of the particle 
at time t, and x + zV, + e(z) is the position at the later time t + z. V~ is the (constant) settling 
velocity and e(z) is the change in x due to random velocity fluctuations. RP(z) is the fluid velocity 
auto-correlation along a particle path, normalized so that R~(0)= 1. 

In the limit of very heavy particles (z V~ >> e(z)), the turbulence can be assumed to be "frozen" 
in time and [15] may be written as 

o r  

G(z) =- u'2RE(zVs, O) [16] 

'co 

where T(y )  = P(eddy length > y). 

g(l¢) dle dy T(y)  dy 

g(le)dledy ~(y)  dy 
0 

Particle dispersion in the case of heavy particles falling under gravity in HIST is determined by 
the crossing time of a particle, which is determined by the eddy length distribution. By analogy 
with the case of  fluid particle dispersion in HIST, stationarity in the case of heavy particles falling 
under gravity can be assured by choosing the crossing time distribution at t = 0 to be the same 

[22] 

RP(z) = RE(rVs, 0) [17] 

Here, RE(X, t) is the Eulerian fluid velocity auto-correlation, defined by 

(vr(Xo, to)Vr(Xo + x, to + t)) (vf(Xo, to)Vr(Xo + x, to + t)} 
= _ [181 RE(x,  t )  (v~ (xo, to))  u '2 

and is assumed to be independent of  to and x0. 
Integrating both sides of [17] with respect to z, gives 

ff lff - _ - -  [19] RP(z) dz = zF = ~ Re(X, O) dx AEvs 

where Ae is the Eulerian length-scale of the flow and v p is the integral time scale of the fluid motion 
following the particle. 

2.3.1. Determination of  RE(x, O)in eddy interaction models. It is usually assumed (Hutchinson 
et al. 1971) that the eddy length is constant throughout the flow. However, it is possible to allow 
the eddy length to be variable and Burnage & Moon (1990) used an eddy interaction model in which 
the eddy length was distributed according to the exponential probability distribution. If the length 
is distributed according to the p.d.f, g(le), then the particle crossing time tc is also random. For 
a very heavy particle, it can be assumed that the interaction time t~ is determined solely by the 
crossing time to, independently of the eddy lifetime te. In this case, it is evident that P(crossing 
time > t ') = P(eddy length > t'Vs), so that 

c~F(t') = g ( l e )  d /e ,  [20]  
' Vs 

where q~F(t') = P(crossing time > t'). 
Using the analysis of Wang & Stock (1992), it follows that 

R ~ ( ~ ) =  °~ ---~ [211 

fo f g(lo)dl~dt' 
• Vs  

Substituting y = t' V s, x = z V s, and using [17], we find that 



TURBULENT DISPERSION OF PARTICLES 163 

as the distribution of the time to the "next" eddy in the stationary state. It is clear that stationarity 
in this case corresponds to spatial homogeneity of the turbulence. Spatial homogeneity can 
therefore be ensured by choosing the first length from a distribution such that P(first eddy 
length > x) = RE(X, 0). 

The integral length scale of the model turbulence is given by 

A ~odeJ = RE (X, 0) dx [23] 

Consistency between model and reality is ensured by making the Eulerian integral length scale 
A ~oae~ equal to the actual value of AE. For example, using an eddy model with a constant eddy 
length L e, then g(le)= ~(le- Le). In this case 

X 

RE(X,O ) flo---~e ' x<<'Le = [24] 
x >Le 

Integrating RE(x), it is found that A ~ode~ = Le/2. Therefore, in the same way that in the constant 
lifetime model, the eddy lifetime Te should correspond to twice the Lagrangian integral time scale 
re of the turbulence, for the constant eddy length model, the eddy length Le should equate to twice 
the Eulerian length-scale AE. This fact has also been pointed out by Minier & Pozorski (1992). 
Spatial homogeneity is ensured in this case by specifying that the length of the first eddy should 
come from a uniform distribution on [0, Le]. 

2.4. Implications for eddy interaction models in non-homogeneous turbulence 
The analysis given above clearly has implications for the length and time scales chosen as 

representative scales in non-homogeneous turbulence. In particular, the widely-used model of 
Gosman & Ioannides (1981) assumes that the eddy length and lifetime are equal to the "dissipation 
scales" L, and T~, given by 

L, = C 3/4 k3/2 N~ ~ k --u , T,= C 3/4 [25] 
E E 

where k is the turbulence kinetic energy, E is its rate of dissipation and C u is a constant appearing 
in the k-E turbulence model. If these dissipation scales are considered to be representative scales 
in the case of non-homogeneous turbulence in the same way as the integral length and time scales 
in HIST, it is clear that the eddy length and lifetime should in fact be double the values given in 
[25]. Models using the length and time scales given in [25] should be expected to under-estimate 
particle dispersion. 

3. DISPERSION OF NON-FLUID PARTICLES IN HIST 

3. I. Particle motion 
Non-fluid particles will not, in general, follow exactly the fluctuations of the fluid velocity in 

turbulent flow. Instead, the particles respond to the balance of forces acting on them. Here, it is 
assumed that the concentration of particles is small, so that particle-particle interactions can be 
ignored. In addition, it is assumed that the size of the particles is small compared with the 
Kolmogorov scale of the turbulence and that they do not spin, so that there are no lift forces on 
the particles. Under these circumstances, the equation of motion of a solid, spherical particle in 
a non-uniform flow is given by Maxey & Riley (1983). In the absence of any body forces and under 
the assumption that the ratio of the density of particles to that of the fluid is large, the only force 
acting on particles is that due to drag. The equation of motion may then be written in the form 

dup(t) up(t) uf(t) 
- -  + = -  [ 2 6 ]  

dt Tr ~r 
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where zr is the relaxation time of the particle, defined by 

4 ppdp [27] 
rr -- 3 pflurlC d 

where pf and pp are the densities of the fluid and the non-fluid particle, respectively, dp is the 
diameter of  the non-fluid particle, Ur is the fluid-particle relative velocity and Cd is the drag 
coefficient. 

The product of zr and the particle velocity is a measure of the stopping distance if the particle 
were moving in a stagnant fluid (Young & Hanratty 1991). For  small values of Zr, the particle 
motion responds quickly to the fluid motion and therefore follows the fluid velocity fluctuations 
closely. For  high values of "Or, on the other hand, the particle is slow to respond to the fluctations 
of the fluid flow and does not follow the fluid so closely. 

In general, "c r is dependent upon the particle Reynolds number, Rep = pflurldp/I.tf, where/t  r is the 
fluid viscosity. In the case of Stokesian drag, when Rep is very small (<< 1), the drag coefficient Co 
is equal to 24/Rep. In this case, the relaxation time can be written as 

r r  = p p  d p  [281 
18fir 

The relaxation time is then dependent only on the material properties of the particles and fluid, 
and does not depend on the particle Reynolds number. 

In order to progress with the analysis, the assumption is made that the drag is Stokesian. This 
has the advantage that the resulting particle motions can be evaluated analytically and also allows 
direct comparison to be made between the results of this analysis and certain others found in the 
literature. 

3.2. Analysis o f  particle dispersion 

The dispersion of non-fluid particles in turbulent flows is determined by the fluid velocity along 
the particle track. Pismen & Nir (1978) have considered the following correlations of particle and 
fluid velocities: 

H(z)  = lim (up(t)up(t + z)) [29] 
t~oo 

G(z) = lim (uF(t)uF(t + z)) = u '2 lim (uF(t)uF(t + z ) )  _ u,2RF(r) [30] 
t~co t~oo U ~2 

where Up(t) and up(t + z) are the velocities of  a non-fluid particle at times t and t + z, respectively, 
and the angled brackets indicate ensemble averaging over a large number of such particles, uF(t) 
and uF(t + z) are the velocities of fluid particles situated along the particle track at times t and 
t + z, respectively. H(z)  is thus the non-fluid particle velocity auto-correlation, whilst G(z) is the 
fluid velocity auto-correlation evaluated along the track of a non-fluid particle. RF(z) is again the 
fluid velocity auto-correlation along a particle track, normalized so that RF(0)= 1. 

Pismen & Nir (1978) showed that, assuming a Stokesian drag law, 

f x fl e-l~l'-~lG(t) dt [31] H(~) = 2 

where fl = 1/r~ is the reciprocal particle relaxation time. 
The dispersion of non-fluid particles is determined by H(t) .  The mean-squared displacement of 

particles situated initially at x = 0 is determined by the equation 

JT~(t) = 2 H(z)  dr d t '  [32] 

and Pismen & Nir (1978) evaluate the dispersion coefficient for non-fluid particles by means of the 
relationship 

, d  
Dp(t) = ~ ~ ()Tzp(t)) = H(z)  dz [33] 
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The long-time dispersion coefficient/)p is defined as the limiting value of Dp(t) as t ~ ~ :  

/~p = -~ e -~l'-rIG(t) dt dz [34] 
--ct3 

It follows (Hinze 1975) that 

;o o ;o Dp = G(t) dt = u'2RF(t) dt = u'2zF [35] 

where zF is the integral time-scale of the fluid velocity evaluated along the path of a non-fluid 
particle. 

3.3. Correlation G(z) in eddy interaction models 

To evaluate the functions G(z) implied by eddy interaction models, the methods of Wang & 
Stock (1992) can be used. These authors consider the diffusion of fluid particles. In section 2.2.1, 
it was shown that if the eddy lifetime t¢ is distributed randomly accordingly to the p.d.f, f(t¢), then 
the Lagrangian auto-correlation function is given by 

~ q~(t¢) dt~ 

RL(Z) = R~('c) = [36] 

~b(te) dt¢ 

where ~b(t') -- P(lifetime > t') and R[(z) denotes the fluid velocity auto-correlation along the path 
of a fluid particle. 

Consider now the motion of non-fluid particles in eddy interaction models. The interaction time 
ti, defined as the time spent by a particle within an eddy, is determined as follows: 

(1) if l ur [ ~< l~/Zr (particle is captured), 

I i = t¢, 

(2) if lUrl > l~/'Cr (particle crosses eddy in finite time t~), 

ti = min(t,, to), 

where tc = - z r  log(1- le/(lUrlZr) ) (see section 4.1 below) is the time taken by a particle to travel a 
distance equal to l, and where u~ is the (random) fluid/non-fluid particle relative velocity. The 
interaction time ti is thus a random variable. Condition (2) above ensures that the interaction time 
never exceeds the eddy lifetime. The probability distribution of the interaction time is determined 
below. Knowledge of the distribution enables the methods described in section 2 to be used to 
determine the fluid velocity correlation along the particle path, G(z)= u'2RF(~). 

Given an eddy of length l¢, a particle will not have crossed the eddy within a time t '  if the 
magnitude of the fluid/non-fluid relative velocity lUrl is less than Umax(t', l~), where 

to 
Umax(t', l~) = rr(1 - e-C/~0 [37] 

If the relative speed is greater than Umax(/ '  , le) , the non-fluid particle will have crossed the eddy in 
the time t '  (i.e. t~ < t'). 

The interaction time t i is greater than t '  if both the eddy lifetime te and the crossing time t¢ are 
greater than t'. Thus, denoting by ~bF(t') the probability that, along a particle track, the interaction 
time is greater than t', we can write 

fo ';°'' q~F(t') = , f ( t , )  dt¢ g(l,) 2h(u,) du, dl, [38] 

where f ( t , )  is the p.d.f, of the eddy lifetime, g(l,) is the p.d.f, of the eddy length and h(u,) is the 
p.d.f, of ur. It has been assumed in the above expression that, without loss of generality, h(ur) is 
symmetrical about Ur = 0. It is also assumed that the eddy length, lifetime and velocity are all 
independently distributed. This is consistent with each of the eddy interaction models discussed in 
section 2, including the models of Hutchinson et al. (1971), Gosman & Ioannides (1981), Faeth 
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(1983), Kallio & Reeks (1989) and Burnage & Moon (1990). The case when the eddy length and 
eddy lifetime are correlated is discussed at the end of this section. 

Using the methods of section 2, the fluid velocity auto-correlation along the track of a non-fluid 
particle is given by 

f ~ F ( t ' )  dt '  

R F ( r ) -  ~ [39] 

fo (aF(t') dt' 

i.e. 

f(te)dte fo g(le) J0 2h(ur)durdledt' 

RF(v)= f0 oo t'j :m.x(",'o' [40] 
f i t , )  dte g(le) 2h(ur) dur dle dt '  

It is evident from this expression that 

G(z) = uZ2RF(T) ~ 0 [41] 

Note that, since a fluid particle will always be captured by an eddy, the interaction time t i for such 
a particle is always equal to the eddy lifetime te. In this case, we can write 

c~(t') = , rite) dte [42] 

where ~b[(t') = P(interaction time > t') = P(eddy lifetime > t'). 
We next define the function p(t') as follows: 

p(c) = ¢F(t') fo~ t ('''lo) .... ( 9~ ( l ' )  - -  g ( l e )  2h(u~) du r dl¢ [43] 
do 

Since Umax(t '  , le) is a decreasing function of t', for any given l e, then p(t') is also decreasing in t'. 
It is shown in appendix A that, if p (t') is a decreasing function of t', then the following inequality 
holds: 

RL (Z ) = R~(r ) >>. RF(z ) [44] 

As zr~oo, the non-fluid particle becomes stationary and RF(z) approaches the Eulerian (fixed- 
point) auto-correlation RE(0, z). In this case, Umax(t', l~) becomes le/t' and the Eulerian auto-cor- 
relation function can be written as 

~ q~E(t') d t '  
RE(0, z) = RF(z) - [45] 

(~E (t t) dt '  

where 

f0 s° f/e/t' q~E(t') = g(l¢) 2h (ur) dur dl~. [461 
dO 

If it is assumed that both the fluid velocity and the particle velocity are normally distributed, the 
p.d.f, of the fluid/non-fluid relative velocity, h(ur), decreases as Ur increases. It can be shown that, 
if h (Ur) is a decreasing function of u~, then the ratio 4~E (t')/~b ?(t') is decreasing in t '  and the analysis 
of appendix A can be used to show that 

RF(z) >t RE(0, z) [471 

for all values of z. 
3.3.1. Integral time scales and dispersion coefficients. The auto-correlation functions derived in 

section 3.3 can be used to determine the integral time scale of the fluid velocities following the path 
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of a non-fluid particle. From [44] and [47], it follows that the integral scale of the fluid velocity 
following a non-fluid particle must lie between the Lagrangian and Eulerian integral time scales 

where 

rC I> ZF >/ rE, [48] 

t 
l c~3 

rE = RE(0, z) dr [49] 
0 

is the Eulerian integral time scale. 
Using [35], it can be seen that, in simulations of particle dispersion using eddy interaction models, 

the dispersion coefficient of the non-fluid particles is therefore constrained to lie in the range 

U'2~L >/Dp ,2 r [50] = U "~p ~ Ut2"CE . 

It is therefore clear that, assuming Stokesian drag, using eddy interaction models of the kind 
considered in this analysis, non-fluid particles will disperse less rapidly in HIST, in the long term, 
than fluid particles. In the next section, in order to test the predictions of the above analysis, a 
series of numerical tests has been performed to simulate dispersion for various values of Tr, the 
particle relaxation time. 

The analysis has been completed for the case when the eddy length and lifetime are uncorrelated. 
However, it is clear that the constraint, even if they are correlated, the interaction time cannot 
exceed the eddy lifetime that leads to a general reduction of the interaction time compared with 
the case of fluid particles. This in turn implies that the time to the "next" eddy is likewise decreased. 
Using the analysis of section 2, the integral time scale of the fluid velocity following a particle can 
be interpreted as the mean time to the next eddy interaction. The constraint that the interaction 
time cannot exceed the eddy lifetime leads to the constraint that "c L ~ "C F e v e n  when the eddy length 
and lifetime are correlated. In the case of Stokesian drag, this will inevitably lead to the reduced 
dispersion of non-fluid particles compared with fluid particles, irrespective of the correlation 
between eddy length and eddy lifetime. 

In the case where the drag on particles does not follow Stokes' law, the equation of motion of 
a non-fluid particle cannot be solved explicitly. The analysis given above remains valid except that 
it should be noted that Umax (t', le), the fluid/non-fluid relative velocity above which a particle crosses 
an eddy within the time t', cannot be found analytically. Under any drag law, Umax(t' , le) continues 
to be decreasing as t '  increases so that the function defined by [43] is again decreasing as t '  increases. 
Inequality [44] therefore remains valid even in the case of a non-linear drag law. However, the 
relationship between the dispersion coefficients given in expression [46] depends upon the 
assumption of Stokesian drag, and no analogous relationship can be derived in the case of 
non-Stokesian drag. 

4. N U M E R I C A L  M O D E L L I N G  OF PARTICLE DISPERSION 

4. I. Particle mot ion 

From the assumption of Stokesian drag, it is possible to derive analytical expressions for the 
particle velocity and position at the end of an interaction with an eddy. Suppose that, on entry 
to an eddy, a non-fluid particle is located at Xp0 and has a velocity of up0. The fluid velocity within 
the eddy is ue (see figure 1), and the interaction time is given by ti. Remembering that Ue is constant 
for a single particle--eddy interaction, the equation of motion of the particle can be written as 

e_t/,, d (up(t)e,/~r) = uo 
~'r 

and the particle position is obtained by integration of the velocity 

Xp(t) = Xp0 + fo up(t') d t '  

[51] 

[52] 
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The integral in the above expression can be evaluated analytically, so that, after the interaction 
with the eddy, the updated particle velocity upj is given by 

Up, = Ue -- (Ue -- up0)e -'JTT [53] 

The updated particle position Xp~ is given by 

Xpl = ( Xvo + ti u~ ) - ( ue - Up0)Zf(1 - e li/Zr ) [54] 

Note that the crossing time tc is given by the solution of the equation 

i x d  t~ ) -  X~o - tcuol = to [55]  

i.e. 

tc = - r r  log( l - [u r l l r r )  [56] 

where Ur, = Ue- Up0, is the fluid-particle relative velocity. The above expression is valid only if 
le/(luflzr) < 1, and if this condition holds, t~ is set equal to to. If this inequality does not hold, the 
particle is "captured",  in which case t~ is set equal to t~. Because the interaction time can be 
determined prior to the interaction, only one integration is required per eddy. 

In the case of  a small relaxation time, the particles will almost always be captured by the eddies. 
The interaction time will thus be equal to the eddy lifetime and the particle velocities will quickly 
approach the fluid velocities. In this case, the dispersion of non-fluid particles will be similar to 
that of  fluid particles. In the case of  a large relaxation time, the interaction time will more often 
be equal to the particle crossing time. In such cases, the interaction time will be independent of  
the eddy lifetime. In the limit as the relaxation time tends to infinity, the probability that the 
interaction time is given by the eddy lifetime approaches zero. In addition, the particle appears to 
the fluid to be a fixed point, so that the Eulerian fluid velocity auto-correlation determines 
dispersion for very heavy particles. 

4.2. N u m e r i c a l  results  
t model  Results are presented in this section for three values (0, 1 and 2) of the ratio ~ = u ZL/A z for 

fixed u' and rL" Ct is the ratio of  the Lagrangian integral time scale, rL, to the "eddy turnover time" 
AE/U',  and is usually assumed to be of the order of 1. The case ~ = 0  corresponds to 
G ( r )  = u'2RL(~),  for which the analytical solution for H(z)  is given in appendix B. In order to test 
the validity of  the analysis, two models for eddy lifetime are used. In both models the eddy velocity 
u e was assumed to come from a normal distribution with mean zero and standard deviation 
u'. All computer simulations used 20,000 particles and each particle was followed for a dura- 
tion of 1000 ZL. The long-time dispersion coefficients /5p were evaluated approximately as 
/30 = )72(t = 1000 zL)/(2000 rL). 

In the first model, constant eddy lifetime and constant eddy length are used. The variation of 
)7~(t) with time can be seen from figure 2, in which )72p(t)/(2 u'ZtzL) is plotted against t /rL for the 
three cases ~ = 0, 1, 2. Results for two values of Tr/VL, 0.01 and 10, are shown, indicating the 
behaviour of  "fluid" and heavy non-fluid particles. It is evident from figure 2 that, especially for 

= 2 but also, to a lesser extent, for c~ = 1, whilst fluid particles eventually disperse as 2trL, the 
heavy particles are dispersed less rapidly. However, for ~ = 0, heavy particles do eventually disperse 
as rapidly as fluid particles. The reason for this is that when ~ = 0, the long time dispersion 
coefficients for fluid and non-fluid particles are equal (see appendix B). For  the cases ~ = 1 and 

= 2, the particle dispersion coefficient is generally less than that for fluid particles, as a result of  
the inequality G ( z )  < u '2RL(z )  for these cases. The results also indicate that for heavy particles, 
the long-time dispersion coefficient /50 decreases with increasing ~, i.e. with decreasing eddy 
length. 

The second model assumes an exponential distribution for the eddy lifetime, as used by Kallio 
& Reeks (1989). Results for the cases ~ = 0, 1 and 2 for particle relaxation times Zr/TL = 0.01 and 
10 are shown in figure 3. It can be seen that, for the heavy particles, dispersion for the cases c~ = 1 
and 2 is under-predicted using the exponential model, compared with the constant lifetime 
model. This is thought to be due to a form of "filtering" whereby, when the exponential 
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Figure 2. Normalized mean-square displacement vs time for "fluid" and "heavy" particles---constant 
lifetime model. 

distribution happens to produce a large eddy lifetime, there is an increased chance that the eddy 
time may be determined by the crossing time. The contribution from large lifetimes may well 
be curtailed, tending to lead to less dispersion than would otherwise occur. Again 
/3p(~t =0)>/~p(ct = 1)>/)p(~ =2)  for heavy particles, indicating the decrease in dispersion 
coefficient with decreasing eddy length. It is also noted that, for the exponential distribution, the 
mean eddy lifetime is equal to TL, whereas, for the constant lifetime model, it is 2TL. It follows that 
approximately twice as many eddy interactions take place in a given period of time in the 
exponential model compared with the constant lifetime model. 

The ratio of long-time dispersion coefficients for various values of ~ and Zr/ZL for both 
models is plotted in figure 4, which also illustrates a comparison with the analytical results of 
Pismen & Nir (1978). These authors predict that heavy particles disperse more rapidly, in the 
long-time limit, than fluid particles. The numerical results of this section show that this 
phenomenon is not observed using conventional eddy interaction methods, confirming the analysis 
of the previous section. The experiments of Wells & Stock (1983) and the direct numerical 
simulation results of Squires & Eaton (1991) indicate that it may be possible that heavy particles 
disperse more rapidly, in the long term, than fluid particles. Modifications of eddy interaction 
models which lead to the capability of modelling such a phenomenon are to be investigated in a 
subsequent paper (Graham 1996). 
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5. CONCLUSIONS AND FINAL COMMENTS 

This study of eddy interaction models for the dispersion of fluid and non-fluid particles in 
homogeneous, isotropic and stationary turbulence leads to the following conclusions. 

(1) Following Wang & Stock (1992), time-scale consistency has been ensured by a suitable choice 
of the eddy lifetime distribution. This distribution has been chosen so that the Lagrangian 
integral time scale of the model turbulence is equal to that of the actual turbulence. The 
relationship between time-averaging and ensemble-averaging in eddy interaction models has 
been investigated and leads to a simple interpretation of the Lagrangian integral time scale 
in these models. In addition, a method has been introduced which, by considering the lifetime 
of the first eddy only, forces the model turbulence to be stationary. These measures ensure 
that the long-time dispersion of fluid particles is predicted correctly. 

(2) The relationship between the eddy length distribution and the Eulerian spatial velocity 
auto-correlation has been derived. A method has been introduced to ensure consistency of 
length scales by a suitable choice of the eddy length distribution. This distribution must be 
chosen so that the Eulerian integral length scale of the model turbulence is equal to that of 
the actual turbulence. By considering the length of the first eddy, a method has been 
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lifetime model. 
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introduced to enforce spatial homogeneity of the model turbulence. These measures ensure 
that the long-time dispersion of heavy particles settling under gravity is predicted correctly. 

(3) Dispersion of non-fluid particles has been analysed. When the drag on a particle follows 
Stokes' law, this dispersion is determined by the auto-correlation of the fluid velocities 
following a non-fluid particle, G(z). An analytical relationship has been derived between 
G(z) and the eddy length, lifetime and velocity distributions. It has been shown that in 
conventional eddy interaction models, in which the eddy interaction time never exceeds the 
eddy lifetime, the integral time scale TF associated with G(z) cannot exceed the Lagrangian 
integral time scale ZL. This is the case whether or not the drag on a particle follows Stokes' 
law. However, in the case where the drag is Stokesian, this fact can also be used to show 
that the long-time dispersion coefficient of non-fluid particles is always less than that for fluid 
particles. 

(4) Numerical simulations confirm the dispersion analysis for particular cases of the eddy 
interaction model. All the simulations have used constant eddy length specification. It has 
been shown that the dispersion coefficient of non-fluid particles is affected by the imposition 
of finite eddy length Le and that, for heavy particles, (large T,/TL), the dispersion coefficient 
generally decreases with decreasing Le. 

(5) Eddy interaction models utilizing an exponential distribution for the eddy lifetime are shown 
to be affected more by the imposition of a finite eddy length than the corresponding models 
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using constant eddy lifetime. In addition, in modelling the dispersion of fluid particles, the 
number of eddies encountered in using the exponential lifetime scheme is approximately twice 
that encountered using the constant eddy lifetime scheme, so that each computer simulation 
takes twice as long. These facts lead to the conclusion that the constant eddy lifetime scheme 
is to be preferred to the exponential lifetime scheme. 

These conclusions enable adjustments to be made to existing eddy interaction models in order 
to ensure consistency of time and length scales, and lead to a model turbulence which is stationary 
and homogeneous. More importantly, perhaps, is the conclusion that, for the models discussed, 
fluid particles will disperse more rapidly, in the long term, than non-fluid particles. 

Experimental evidence and independent numerical simulations indicate the possibility that 
long-time dispersion of non-fluid particles can exceed that of fluid particles. It is clear that 
conventional eddy interaction models are not capable of predicting such behaviour. Modifications 
of eddy interaction models which do predict increased dispersion of non-fluid particles are to be 
reported in a subsequent paper (Graham 1996). 
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A P P E N D I X  A 

[¢2 (t 91 is Proof that RI (z) >~ R 2 (z) if p(t') - ~ Decreasing 

Suppose that two different eddy interaction time distributionsf~ (t,) andfz(t.) lead eventually to 
two different auto-correlations R l (z) and R2 (~). 
By definition 

and by hypothesis 

~t °° 
q~, (t') = f~ (t~) dt~, 

ft ~f2( ) d ~b2(t') = te te, 

[A1] 

[A2] 

q~2(t') 
p(t') = is decreasing in t'. [A3] 

~,(t') 

Using Wang & Stock's method to determine Rl(Z ) and R:(r), it follows that 

Rl(Z ) - R2(T ) -- 
~b I (t') dt '  q~2 (t') dt '  

~b, (t') dt '  ~bE(t') dt '  
[A4] 
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~bE(t' ) d t '  t~t (t ') d t '  
[A5] 

fo ~ f0 ~ q52 (t ') d t '  q~l (t ') d t '  

fo ;o ~ ;o ~ f~ q~2 (t ') d t '  qS, (t ') d t '  - (~1 (t') d t '  ~bE(t' ) d t '  

= - o0 [A6] 

j r ~ q~l (t ') d t '  q~2(t') d t '  
o J 0  

Since the denominator  is positive, then the sign of  RI ( z ) -  R2(z) is the same as the sign of  the 
numerator  

f: f: ;o ~ r ~ N -- q~2 (t') d t '  ~)1 (t ') d t '  - ~1 (t ') d t '  ~b2 (t ') d t '  [A7] 
. /o 

This can be written as 

;o;o o fo~fo o N = q~2 (t')qS~ (t") dt"  d t '  - q~, (t')~b2 (t") d t"  dt ' .  [A81 

Substituting q~2(t')= p(t')~)l(t ') ,  it follows that  

fofo ~ ;:fo ~ N = p(t')(~l (t')f~l(t") dt" d t " -  p (t")q~t (t')q~ (t") dt"  dt ' .  [A9] 

~fo ~ = ~l(t')C~l ( t")(p( t ' )  -- p(t")) dt" dt' .  [A10] 

= c~, (t')c~ (t") ( ;  (t ') -- p(t")) dt" dt' .  [A111 

since 

f o ; o ~ q ~ l ( t ' ) ( b l ( t " ) ( p ( t ' ) - p ( t " ) ) d t " d t ' = O  [A12] 

Thus, if p( t ' )  is decreasing in t ' ,  p ( t ' )>~p( t" )  in [All] ,  so that  N is positive. Thus, from [A6], 

Rl (z) -- R2(z) i> 0 

o r  

The result holds for all z /> O. 

R, (x) >/R2(z) [AI31 

A P P E N D I X  B 

Particle Velocity Auto-correlation when G(z )=  ugRL(r) 

Equat ion [31] may be written as 

~o~ F H(z  ) = u e -t~l'-~lRL(t ) d t  
- - o 0  

Constant lifetime model 

Substituting RL(Q = u02(1 --I~l/Te) in [B1] it follows that  

H ( ~ ) = U o  2 1 - ~ + 2 - - ~ ( e  -~ ' ( e - ~ ' + e ~ ' ) - 2 e - a 9  , ~ ~< :re 

u°2 e-P¢(e -~ro + e ar° - 2),~/> To 
- 2 flr~ 

[B1] 

[B2] 
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This expression for H(z)  leads to 

j 'o0 Te = / ~ f  
/~p = H(z) dr = u 02 T 

0 
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[B3] 

i.e. the dispersion coefficient for massive particles is independent of the particles relaxation time 
and is equal to that of fluid particles,/5 r. 

It is also noted that 

H(0)= u02{1- ~Te ( 1 -  e-~r~)} [B4] 

where H(0) = 2/3 x energy of particle fluctuations per unit mass. 

Exponential lifetime model 

Substituting R2(z)= e -I'l/~L into [B1] leads to 

H(z)  = U2[3ZL {/~ZLe-'/'L -- e-a'} [B5] 
((,gZL) 2 1) 

This expression for H(r)  gives, again, 

f: /~p = H(r) dr = u02zr =/)r  [B61 

Furthermore, 

UO2flrL 
]-](0) ~ (~'~L "3L 1)" [87]  
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